
VIRUS BULLETIN www.virusbtn.com

4 JANUARY 2009

ANTI-UNPACKER TRICKS – PART
TWO
Peter Ferrie
Microsoft, USA

In the fi rst part of this series last month (see VB, December
2008, p.4) we looked at a number of anti-unpacking tricks
that have come to light recently. New anti-unpacking
tricks continue to be developed because the older ones are
constantly being defeated. In this article and the ones that
follow, we will describe some tricks that might become
common in the future, along with some countermeasures.

INTRODUCTION
Anti-unpacking tricks come in different forms, depending
on what kind of unpacker they are intended to attack.
The unpacker can be in the form of a memory-dumper, a
debugger, an emulator, a code-buffer, or a W-X interceptor.
It can also be a tool in a virtual machine. There are
corresponding tricks for each of these.

• A memory-dumper dumps the process memory of the
running process without regard to the code inside it.

• A debugger attaches to the process, allowing
single-stepping, or the placing of breakpoints at key
locations, in order to stop execution at the right place.
The process can then be dumped with more precision
than a memory-dumper alone.

• An emulator, as referred to within this paper, is a
purely software-based environment, most commonly
used by anti-malware software. It places the fi le
to execute inside the environment and watches the
execution for particular events of interest.

• A code-buffer is similar to a debugger. It also attaches
to a process, but instead of executing instructions in
place, it copies each instruction into a private buffer and
executes it from there. It allows fi ne-grained control
over execution as a result. It is also more transparent
than a debugger, and faster than an emulator.

• A W-X interceptor uses page-level tricks to watch for
write-then-execute sequences. Typically, an executable
region is marked as read-only and executable, and
then everything else is marked as read-only and non-
executable (or simply non-present, depending on the
hardware capabilities). Then the code is allowed to
execute freely. The interceptor intercepts exceptions
that are triggered by writes to read-only pages, or
execution from non-executable or non-present pages.
If the hardware supports it, a read-only page will be

replaced by a writable but non-executable page, and
then the write will be allowed to continue. Otherwise,
the single-step exception will be used to allow the write
to complete, after which the page will be restored to
its non-present state. In either case, the page address
is kept in a list. In the event of exceptions triggered by
execution of non-executable or non-present pages, the
page address is compared to the entries in that list. A
match indicates the execution of newly written code,
and is a possible host entry point.

Now we move to potentially new tricks. All of these
techniques were discovered and developed by the author of
this paper. This article will concentrate on anti-debugging
tricks.

ANTI-UNPACKING BY ANTI-DEBUGGING

1. Heap fl ags
Within the heap are two fi elds of interest. The
PEB->NtGlobalFlag fi eld forms the basis for the values in
those fi elds. It should be noted that the HEAP_VALIDATE_
PARAMETERS_ENABLED fl ag value was changed in
Windows XP and later, from 0x200000 to 0x40000000,
and that a new NtGlobalFlag fl ag 0x80 (FLG_HEAP_
VALIDATE_ALL) was introduced (which corresponds to
the HEAP_VALIDATE_ALL_ENABLED fl ag). Further,
the location of the Flags and ForceFlags fi elds is different
in Windows Vista. No current packer supports the new
location, which is the reason why some packers will not run
on Windows Vista.

Example code for Windows Vista looks like this:
mov eax, fs:[30h] ;PEB

;get process heap base

mov eax, [eax+18h]

mov eax, [eax+40h] ;Flags

dec eax

dec eax

jne being_debugged

and this:

mov eax, fs:[30h] ;PEB

;get process heap base

mov eax, [eax+18h]

cmp d [eax+44h], 0 ;ForceFlags

jne being_debugged

2. Special APIs

2.1 CreateFile

The kernel32 CreateFile() function can be used to open a fi le
for exclusive access. This technique is not new in general,
but it is new with respect to debugger detection techniques.

TECHNICAL FEATURE

http://www.virusbtn.com/pdf/magazine/2008/200812.pdf
http://www.virusbtn.com/pdf/magazine/2008/200812.pdf

VIRUS BULLETIN www.virusbtn.com

5JANUARY 2009

Example code looks like this:
 xor ebx, ebx

 mov ebp, offset l1

 push 104h ;MAX_PATH

 push ebp

 push ebx ;self fi lename

 call GetModuleFileNameA

 push ebx

 push ebx

 push 3 ;OPEN_EXISTING

 push ebx

 push ebx

 push 80000000h ;GENERIC_READ

 push ebp

 call CreateFileA

 inc eax

 je being_debugged

 ...

l1: db 104h dup (?) ;MAX_PATH

This technique works against the debugger Turbo Debug32,
but not debuggers such as OllyDbg and WinDbg. It is related
to the debug privilege, which debuggers such as OllyDbg
and WinDbg maintain, while Turbo Debug32 does not.

2.2 RaiseException

The kernel32 RaiseException() function can be used to
force certain exceptions to occur. These include exceptions
that a debugger would normally consume.

Turbo Debug32 consumes the following exceptions:
0x40010005 (DBG_CONTROL_C)

0x40010007 (DBG_RIPEVENT)

0x80000002 (DATATYPE_MISALIGNMENT)

0x80000003 (BREAKPOINT)

0x80000004 (SINGLE_STEP)

0x80000029 (UNWIND_CONSOLIDATE)

0xC0000005 (ACCESS_VIOLATION)

0xC000008C (ARRAY_BOUNDS_EXCEEDED)

0xC000008D (FLOAT_DENORMAL_OPERAND)

0xC000008E (FLOAT_DIVIDE_BY_ZERO)

0xC000008F (FLOAT_INEXACT_RESULT)

0xC0000090 (FLOAT_INVALID_OPER)

0xC0000091 (FLOAT_OVERFLOW)

0xC0000092 (FLOAT_STACK_CHECK)

0xC0000093 (FLOAT_UNDERFLOW)

0xC0000094 (INTEGER_DIVIDE_BY_ZERO)

0xC0000095 (INTEGER_OVERFLOW)

0xC0000096 (PRIVILEGED_INSTRUCTION)

When raised in the presence of Turbo Debug32, none of
these exceptions will be delivered to the debuggee. The
missing exception can be used to infer the presence of
Turbo Debug32.

Example code looks like this:
 xor eax, eax

 push offset l1

 push d fs:[eax]

 mov fs:[eax], esp

 push eax

 push eax

 push eax

 ;DBG_CONTROL_C

 push 40010005h

 call RaiseException

 jmp being_debugged

l1: ...

By default, OllyDbg will consume a similar list of
exceptions, but it can be confi gured to pass them to the
debuggee.

The Interactive DisAssembler (IDA) debugger consumes the
following exceptions:
0x40010006 (DBG_PRINTEXCEPTION_C)

0x40010007 (DBG_RIPEVENT)

0x80000003 (BREAKPOINT)

It is known that WinDbg consumes the DBG_
PRINTEXCEPTION_C (0x40010006) exception, though
this fact is used only rarely. However, WinDbg also
consumes the following exceptions:
0x40000005 (SEGMENT_NOTIFICATION)

0x40010005 (DBG_CONTROL_C)

0x40010007 (DBG_RIPEVENT)

0x40010008 (DBG_CONTROL_BREAK)

0x40010009 (DBG_COMMAND_EXCEPTION)

0x80000001 (GUARD_PAGE_VIOLATION)

0xC0000420 (ASSERTION_FAILURE)

The SEGMENT_NOTIFICATION (0x40000005) exception
is of particular interest, since it can be used to demonstrate
several behaviours. One of these behaviours is to force a
break into the VDM debugger prompt.

Example code looks like this:
 push offset l1

 push 4

 push 0

 ;EXCEPTION_SEGMENT_NOTIFICATION

 push 40000005h

 call RaiseException

 ...

l1: dd 0c0000002h, 0

 dd offset l1, offset l1

 dd 0, 0, offset l1

 db 2b0h dup (0)

Another of the behaviours is to cause the debugger to
remove a breakpoint from the specifi ed location in the
debuggee’s process memory.

Example code looks like this:
 push offset l4

 push 4

 push 0

 ;EXCEPTION_SEGMENT_NOTIFICATION

 push 40000005h

 call RaiseException

 push offset l5

 push 1

VIRUS BULLETIN www.virusbtn.com

6 JANUARY 2009

 push 0

 ;EXCEPTION_SEGMENT_NOTIFICATION

 push 40000005h

 ;remove breakpoint

 call RaiseException

l1: mov al, 0cch

 ...

l2: dd 0

l3: dd offset l7

l4: dd 2 ;dummy context request

l5: dd 6, offset l2, offset l3

 dd 0, offset l2

l6: db 3, 90h ;replacement value

 db 0ah dup (0)

l7: dw 0

 db offset l1 + 1

 db (offset l1 + 1) shr 8

 db (offset l1 + 1) shr 10h

 dw 0

 db (offset l1 + 1) shr 18h

 dd 0, offset l6

 db 7ch dup (0)

 dw 1

 db 8 dup (0), 1, 209h dup (0)

In this case, the value in AL at l1 is altered from 0xCC to
0x90.

In Windows Vista, there are two new exceptions. They are
EXCEPTION_WX86_SINGLE_STEP (0x4000001E) and
EXCEPTION_WX86_BREAKPOINT (0x4000001F).
As their names imply, they are the x86 equivalents
of EXCEPTION_BREAKPOINT (0x80000003) and
EXCEPTION_SINGLE_STEP (0x80000004). When a
single-step or breakpoint occurs in 32-bit mode, these new
exceptions are raised instead of the old ones. If a debugger
does not handle them, then the kernel translates them to the
old values and dispatches them again. In either case, they
will be consumed by the debugger if that was the previous
behaviour.

2.3 DbgBreakPoint

The ntdll DbgBreakPoint() function is called when a
debugger attaches to a process that is already running. This
allows the debugger to gain control because an exception is
raised that it can intercept. This technique can be defeated
simply by erasing the breakpoint.

Example code looks like this:
 push offset l1

 call GetModuleHandleA

 push offset l2

 push eax

 call GetProcAddress

 push eax

 push esp

 push 40h ;PAGE_EXECUTE_READWRITE

 push 1

 push eax

 xchg ebx, eax

 call VirtualProtect

 mov byte ptr [ebx], 0c3h

 ...

l1: db “ntdll”, 0

l2: db “DbgBreakPoint”, 0

If a debugger attempts to attach to a process that contains
such a change, then the thread will exit immediately, and the
debugger will not break in. Turbo Debug32, and possibly
other console-mode debuggers, will hang as a result,
because they wait infi nitely for an exception to be raised in
order to continue execution.

2.4 OutputDebugString

Despite the fact that the kernel32 OutputDebugString()
function raises the DBG_PRINTEXCEPTION_C
(0x40010006) exception, a registered Structured Exception
Handler will not see it. The reason is that Windows registers
its own Structured Exception Handler internally, which
consumes the exception if a debugger does not do so.
As such, the presence of a debugger that consumes the
exception cannot be inferred by the absence of the exception.

However, in Windows XP and later, any registered Vectored
Exception Handler will run before the Structured Exception
Handler that Windows registers. This might be considered a
bug in Windows. In this case the presence of a debugger that
consumes the exception can be inferred by its absence.

2.5 DbgPrint

Similarly, despite the fact that the ntdll DbgPrint() function
raises the DBG_PRINTEXCEPTION_C (0x40010006)
exception, a registered Structured Exception Handler will
not see it. Once again, the reason is that Windows registers
its own Structured Exception Handler internally, which
consumes the exception if a debugger does not do so.
As such, the presence of a debugger that consumes the
exception cannot be inferred by the absence of it.

However, as discussed previously, in Windows XP and later,
any registered Vectored Exception Handler will run before
the Structured Exception Handler that Windows registers
and the presence of a debugger that consumes the exception
can now be inferred by the absence of the exception.
Further, a different exception is delivered to the Vectored
Exception Handler if a debugger is present but has not
consumed the exception, or if a debugger is not present. If
a debugger is present but has not consumed the exception,
then Windows will deliver the DBG_PRINTEXCEPTION_
C (0x40010006) exception. If a debugger is not present,
then Windows will deliver the EXCEPTION_ACCESS_
VIOLATION (0xC0000005) exception. The presence of a
debugger can now be inferred by either the absence of the
exception, or by the value of the exception.

VIRUS BULLETIN www.virusbtn.com

7JANUARY 2009

2.6 LoadLibrary
The kernel32 LoadLibrary() function is an unexpected
method for debugger detection, but a simple and effective
one. When a fi le is loaded in the presence of a debugger
using the kernel32 LoadLibrary() function, and then freed, a
handle remains open for that fi le. As a result, the fi le can no
longer be opened for exclusive access. This fact can be used
to infer the presence of the debugger.

Example code looks like this:
 mov esi, offset l1

 push esi

 call LoadLibraryA

 push eax

 call FreeLibrary

 xor ebx, ebx

 push ebx

 push ebx

 push 3

 push ebx

 push ebx

 push 80000000h

 push esi

 call CreateFileA

 inc eax

 je being_debugged

 ...

l1: db “myfi le”, 0

A less obvious method of achieving the same thing is to
use the resource-updating APIs, specifi cally the kernel32
EndUpdateResource() function. The reason this works
is because it eventually calls the kernel32 CreateFile()
function to write the new resource table.

Example code looks like this:
 mov esi, offset l1

 push esi

 call LoadLibraryA

 push eax

 call FreeLibrary

 push 0

 push esi

 call BeginUpdateResourceA

 push 0

 push eax

 call EndUpdateResourceA

 test eax, eax

 je being_debugged

 ...

l1: db “myfi le”, 0

2.7 NtQueryInformationProcess

As with the ProcessDebugPort class mentioned in [1],
two other classes are similarly affected by arbitrary
patching without checking the process handle:
ProcessDebugObjectHandle and ProcessDebugFlags.

Example code for the ProcessDebugObjectHandle class
looks like this:

 xor ebx, ebx

 mov ebp, offset l1

 push ebp

 call GetStartupInfoA

 ;sizeof(PROCESS_INFORMATION)

 sub esp, 10h

 push esp

 push ebp

 push ebx

 push ebx

 push 1 ;DEBUG_PROCESS

 push ebx

 push ebx

 push ebx

 push ebx

 push offset l2

 call CreateProcessA

 pop eax

 push eax

 mov ecx, esp

 push 0

 push 4 ;ProcessInformationLength

 push ecx

 ;ProcessDebugObjectHandle

 push 1eh

 push eax

 call NtQueryInformationProcess

 pop eax

 test eax, eax

 je being_faked

 ...

 ;sizeof(STARTUPINFO)

l1: db 44h dup (?)

l2: db “myfi le”, 0

Example code for the ProcessDebugFlags class looks like
this:

 xor ebx, ebx

 mov ebp, offset l1

 push ebp

 call GetStartupInfoA

 ;sizeof(PROCESS_INFORMATION)

 sub esp, 10h

 push esp

 push ebp

 push ebx

 push ebx

 push 1 ;DEBUG_PROCESS

 push ebx

 push ebx

 push ebx

 push ebx

 push offset l2

 call CreateProcessA

 pop eax

 push eax

 mov ecx, esp

 push 0

 push 4 ;ProcessInformationLength

 push ecx

 push 1fh ;ProcessDebugFlags

VIRUS BULLETIN www.virusbtn.com

8 JANUARY 2009

 push eax

 call NtQueryInformationProcess

 pop eax

 test eax, eax

 jne being_faked

 ...

 ;sizeof(STARTUPINFO)

l1: db 44h dup (?)

l2: db “myfi le”, 0

3. Hardware tricks

3.1 Execution timing

When a debugger is used to single-step through code,
there is a signifi cant delay between the execution of
the individual instructions when compared to native
execution. This delay can be measured using one of several
possible time sources. These sources include the kernel32
QueryPerformanceCounter(), kernel32 GetSystemTime()
and kernel32 GetLocalTime() functions, the winmm
timeGetSystemTime() function, and interrupt 0x2A (also
known as the KiGetTickCount() function).

4. Process Tricks

4.1 No import table

Windows NT and Windows 2000 assume that an executable
fi le contains an import table, and that as a result,
kernel32.dll is loaded. Kernel32.dll can be loaded by
importing a function directly from kernel32.dll, but it is also
acceptable to import a function from another DLL that also
imports from kernel32.dll (user32.dll, gdi32.dll, etc.).

Normally, if kernel32.dll is not present, a fault will occur
at the location at which the context EIP points, because no
page is mapped there. However, it is possible to change the
value in the PE->ImageBase fi eld to place the executable
fi le in that location. Then, whenever the fi le is executed,
it will receive control instead of causing a fault. Further,
since ntdll.dll is always loaded, it is possible to make use
of some of its functions, such as ntdll LdrLoadDll() and
ntdll LdrGetProcedureAddress(), to resolve the required
functions and execute normally.

4.2 Anti-debugging DLLs

Dynamically loaded DLLs are called initially with the
DLL_PROCESS_ATTACH parameter. If they refuse to
load, they will be called immediately again, but with the
DLL_PROCESS_DETACH parameter. Statically loaded
DLLs are also called with the DLL_PROCESS_ATTACH
parameter. However, if they refuse to load, then the ntdll
NtRaiseHardError() function will be called in order to
display the message: ‘The application failed to initialize

properly’. Following that, the ntdll RtlRaiseStatus()
function will be called.

In the absence of a debugger, this function will trigger an
exception that cannot normally be intercepted, because
all registered Structured Exception Handlers will have
been removed already. However, if the topmost Structured
Exception Handler is replaced, then it will be called via the
ntdll RtlRaiseStatus() function call. This can allow a DLL
to continue execution after a message that suggests that it
terminated.

Example code looks like this:
 push esi

 xor esi, esi

 fs:lodsd

 inc eax

l1: dec eax

 xchg eax, esi

 lodsd

 inc eax

 jnz l1

 mov d [esi], offset l2

 pop esi

 ret

l2: ...

In this case, l2 will gain control after the message box is
dismissed.

4.3 TLS Callback

Thread Local Storage (TLS) callback is an old technique
that remains relatively under-investigated. The following are
some new extensions:

• The TLS callback array can be altered (later entries
can be modifi ed) and/or extended (new entries can
be appended) at runtime. Newly added or modifi ed
callbacks will be called using the new addresses. There
is no limit to the number of callbacks that can be
placed. This technique has been disclosed publicly [2].

 Example callback code looks like this:

l1: mov d [offset cbEnd],offset l2

 retn

l2: ...

 The callback at l2 will be called when the callback at l1
returns.

• TLS callback addresses can point outside of the image
– for example, to newly loaded DLLs.

 Example callback code looks like this:
l1: push offset l2

 call LoadLibraryA

 mov [offset cbEnd], eax

 ret

l2: db “tls2”, 0

VIRUS BULLETIN www.virusbtn.com

9JANUARY 2009

 In this case, the ‘MZ’ header of tls2.dll will be
executed when the callback at l1 returns. The fi le
header can be made executable despite DEP, using the
SectionAlignment trick described in [3]. This allows
the code to run without error.

• TLS callback addresses can contain RVAs of imported
addresses from other DLLs if the import address table
is altered to point into the callback array. Imports
are resolved before callbacks are called, so imported
functions will be called normally when the callback
array entry is reached.

• TLS callbacks receive three stack parameters, which
can be passed directly to APIs. The fi rst parameter is
the ImageBase of the host process. It could be used by
APIs such as the kernel32 LoadLibrary() or kernel32
WinExec() functions. The ImageBase parameter will be
interpreted by the kernel32 LoadLibrary() or kernel32
WinExec() functions as a pointer to the fi lename to load
or execute. By creating a fi le called ‘MZ[some string]’,
where ‘some string’ matches the host fi le header
contents, the TLS callback will access the fi le without
any explicit reference. Of course, the ‘MZ’ portion of
the string can also be replaced manually at runtime, but
many APIs rely on this signature, so the results of such
a change are unpredictable.

• TLS callbacks are called whenever a thread is
created or destroyed (unless the process calls the
kernel32 DisableThreadLibraryCalls() or the ntdll
LdrDisableThreadCalloutsForDll() functions). This
includes the thread that is created by Windows when
a debugger attaches to a process. The debugger thread
is special in that its entrypoint does not point inside
the image. Instead, it points inside kernel32.dll. Thus,
a simple debugger detection method is to use a TLS
callback to query the start address of each thread that is
created.

 Example callback code looks like this:
 push eax

 mov eax, esp

 push 0

 push 4

 push eax

 ;ThreadQuerySetWin32StartAddress

 push 9

 push -2 ;GetCurrentThread()

 call NtQueryInformationThread

 pop eax

 cmp eax, offset l1

 jnb being_debugged

 ...

l1: <code end>

• Since TLS callbacks run before a debugger can gain
control, the callback can make other changes, such

as removing the breakpoint that is typically placed
at the host entrypoint. When combined with the ntdll
DbgBreakPoint() function patch, the result is a fi le that
cannot be debugged by ordinary means. The debugger
will attach to the debuggee, and then wait for the
exception which will never occur. Using Ctrl-C to break in
will work well enough to look at the code, but breakpoints
that are placed within the other threads will not activate.

 Example callback code looks like this:
 push offset l2

 call GetModuleHandleA

 push offset l3

 push eax

 call GetProcAddress

 push eax

 push esp

 push 40h ;PAGE_EXECUTE_READWRITE

 push 1

 push eax

 xchg ebx, eax

 call VirtualProtect

 mov b [ebx], 0c3h

 ;<val> is byte at l1

 mov b [offset l1], <val>

 pop eax

 ret

l1: <host entrypoint>

 ...

l2: db “ntdll”, 0

l3: db “DbgBreakPoint”, 0

 Currently, it seems that no debugger handles this case.
However, the fi x is very simple, and increasingly
necessary. It is a matter of inserting the breakpoint on
the fi rst byte of the fi rst TLS callback instead of the
host entrypoint. This will allow an exception to be
raised as usual. However, care must be taken regarding
the callback address, since as noted above, the address
may be the RVA of an imported function. Thus, the
address cannot be taken from the fi le header. It must be
read from the image memory.

In part three of this article next month we will look at some
miscellaneous anti-debugging tricks, as well as a range of
tricks that target specifi c debuggers.

The text of this paper was produced without reference to
any Microsoft source code or personnel.

REFERENCES
[1] Ferrie, P. Anti-unpacker tricks – part one. Virus

Bulletin, December 2008, p.4.

[2] Self-modifying TLS callbacks.
http://www.openrce.org/blog/view/1114/
Self-modifying_TLS_callbacks.

[3] Ferrie, P. Anti-unpacker tricks. 2008.
http://pferrie.tripod.com/papers/unpackers.pdf.

http://www.virusbtn.com/pdf/magazine/2008/200812.pdf
http://www.openrce.org/blog/view/1114/Self-modifying_TLS_callbacks
http://pferrie.tripod.com/papers/unpackers.pdf

